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An integral relation, applicable to temperature fields of different geometry, is 
presented to link the temperature of a surface subjected to heating with the 
heat flux. 

As is well known, in many instances the algorithm for calculating heat fluxes from 
measurements of the nonsteady temperatures of a surface subjected to thermal action is 
constructed on the basis of a relation of the type [i] 

Fo 

$(Fo) ---- i" T' (Fo) P (Fo - -  Fo) dFo, (1)  

w h e r e  t h e  k e r n e l  P i s  d e t e r m i n e d  by  t h e  g e o m e t r y  o f  t h e  s t r u c t u r e  and i n  t h e  g e n e r a l  c a s e  i s  
expressed in terms of series of transcendental functions or combinations of same. 

In a numerical realization of (i), such as by means of the algorithm [i] 

h 

$ ( k A F o ) = A ~  P~-I+z(TJ+~---TJ),  k =  l, 2 . . . . .  N, (2)  
]~1 

it is necessary either to use sets of previously calculated values of P for different AFo 
s 

and different temperature-field geometries or to provide for computation of these coefficients 
each time directly in the program. These requirements, while not fundamentally limiting in 
computer calculations, nevertheless create certain inconveniences connected with having to 
calculate P for the entire realization in accordance with different algorithms -- depending 

s 
on the type of thermal model -- and with the use of different dependences for large and small 
Fo. On the other hand, it turns out that it is possible to construct boundary-condition re- 
calculation algorithms distinguished by great generality compared to the above and, thus, 
more convenient to realize in certain instances. 

We will examine the relationship in the space of Laplace transforms between q and T for 
the thermal models shown in Fig. i. On the basis of [2] for constant thermophysical proper- 
ties, as well as when they change in the spatial variable according to the laws 

%(r) r k = ~,o rl, c (r )  r h = corn ; "A,(r) r h = Xo(1 ~-mr) z , c(r) r k~-~o(l~-o~r)n; 

(r) r k = ~o exp ( - -  lr), e (r) r h = c~ exp ( - -  nr),  

(3) 

we have the following relations: 

F r(,-, / 
7~ (ro) ~ (to) L 

n~ 

2(,~2) I-v - -  
m 

m 
T ( r  o, s), O ~ r ~ r  o (4) 
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Fig. i. Diagram of the thermal models: a, d) plane field, 
k = 0; b, e) cylindrical, k = i; c, f) spherical, k = 2. 

(models ~, b, c); 

T(r, s)~: [ f(r)c(r) 
qro--5 ~(,o---~ ] 

, [ 
z ( , n - - ~  K _ ~  

t n  

m 

(5) 

(models d, e, f); 

T (r, s) = ~ T (r, ~) exp (--  st) d~, 

I v and  K v a r e  B e s s e l  and  M a c d o n a l d  f u n c t i o n s .  H e r e ,  ~(r) rk~_F(r) c(r)r~~(r), w h i t e  E, v ,  and  

m for the above laws of change in i and e are, respectively, equal to 

r n -  1 tT~-- 2 

1 - I  1 V2o - - -  - 7  v---- " , m - - - - - - ,  E =  ;% 2 ( 1 - - / )  ; 
n - - l + 2  v 

m - - I  m - - 2  rn--2 

v ~  , m - -  , E ~  ~0 ~ ~ ( 1 - - / )  ; 
n - - l + 2  

m - - !  m - - 2  
t 1 

, ~ - ~ ,  m = ~ ,  e = g ~ o L  ~ l ~  ' l < 1 ; , , > ~ - - l + k . ,  ,~n '~, 
It is apparent from (4) and (5) that there exists the following relationship between T(ro, s) 
and q(ro, s): 

q(r o, s) %(ro) l-v+1 [z(ro)] 

q(fo, s) k(ro) K_~+1[z(ro)] 
T(ro, s) V&(ro) K~[z(ro)] 

(6) 

(7) 

1295 



-- -I AT 
~  _ _  

o - -  3 T(Z)/  
• t 

I I 

"0 /,f! 2,22 3,33 4,44 F0 

Fig. 2. Results of solution of the model 
problem: i) actual values of heat flux q; 
2, 3) calculated values of q with Fo* = 

0.25 and Fo* = 0.18; 4) temperature of the 
surface; q, W/m2; AT, ~ 

while 

m 

z (ro) ---- 2Em-' l / ' s  [~,(ro) c(ro) E -z] 2(m-2), (ro) = [(ro) ro  h, c ( ro)= c(ro) ro  h, a (ro) = ~ (ro)/C (ro) 

After differentiation of (6) and (7) with respect to the Laplace transform parameter, we 
obtain 

.[q' (s) T (s) - -  q (s) T' (s)] - -  -- v V'a---~o ) z ,  qZ(s) - - f l  ~'(r~ Z1 T2(s). (8) 
s q (s) T (s) -t- f ,  X (ro) s Va(ro-~--)- 

where 

q ( s ) ~  q(r0, s); T (s) ~ T(ro, s); zl = _fiE [f(ro) ~(r0) E -2] 2(m~-2) , 
m 

w h i l e  t h e  p a r a m e t e r  f z  i s  e q u a l  t o  1 f o r  m o d e l s  a ,  b ,  and c and --1 f o r  m o d e l s  d ,  e ,  and f .  

From (8), after transferring to the originals in accordance with the transformation 
theorems in [2] and after performing several other transformations, we obtain 

Fo F% fo Fo 
q-(Fo--Po)  {/,[(21~o--Fo) T( lYo)- -v  ( T(a} )dO]-k -F , ] -q (O)d~}dFo:FzS  T(Fo- -Fo)  T(F:o)dFo, (9) 

0 0 0 0 

where 

F1  ~ 
;~*rok-, 

~(Fo) = q (Fo) ro/~,*; Fo = a*x/r2; a* = )~*/c*; 
m--I 

' Co " [qh (to) q~2 (ro)] m-2 �9 [~1 (ro) ~ - ~  ~2(ro)] ; F . =  c,rko+l~ m 

Here I* and c* are certain values of l(r) and c(r) from the ranges of their variation (in 
the case of constant thermophysical properties, we can set I* = I and c* = c). The para- 
meter ~ for the laws of change of I and c in accordance with (3) is respectively equal to 
1 -- l, e(l -- l), and Z. The functions ~I and ~2 are in turn equal (for the laws of change 

in I and c being considered) to r~, r~; (l+~r0) t, (l+~ro)n;exp(--Iro),,exp(--nro). We should note 
that for a semiinfinite rod Eq. (9) is valid only when I, c # 0 and I, c # ~ at r = 0. In 

the general case, for a semiinfinite rod with an exponential change in I and c in the space 
variable the following formula is valid: 
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I Fo 
" ( F o - -  Po)-VT'(Fo) dFo, ? = 2v - -  1" 0 < v < 1; ~7(Vo) = r (~) (2 - l + n) ~ , ( 1 0 )  

r ( v )  i s  a gamma f u n c t i o n .  When v = 1 / 2 ,  Eq. (10)  c o i n c i d e s  w i t h  t h e  f o r m u l a  f o r  a s e m i -  
infinite body with constant thermophysical properties. The condition 0 < v < i is connected 
with the requirements for finiteness of the thermal resistance and heat capacity of the 
section near r = 0 [2]. 

It follows from an examination of (9) that the type of geometry of the temperature 
field and the character of change in the thermophysical properties in the space variable for 
the laws (3) affect only the values of the parameters fl, v, FI, and F2. This allows us to 
realize a universal algorithm for computing heat fluxes from measurements of nonsteady 
temperatures of the surface of bodies (fragments of a structure) of different geometry with 
different laws of change in % and c in the space variable. 

However, it should be kept in mind that (9) is an integral equation of the first type 
(nonlinear), so that in the general case the algorithm for numerical realization is un- 
stable with respect to small errors in T and approximation and rounding errors. On the 
other hand, it is known that the recalculation of boundary conditions "is stable for fairly 
general assumptions regarding the input function" [3]. This makes it possible to realize a 
stable algorithm for calculating q with (9) while satisfying certain requirements regarding 
the computing scheme- mainly, having the same types of approximating formulas for T and q 
at the first j computing steps. Nearly the same agreement can be ensured by calculating 
q from algorithms obtained from (6), (7) after changing over to the originals with small Fo 
(large s), these algorithms being applicable to temperature fields of different geometries. 
Calculations show that adequate agreement of q and T is ensured up to Fo* = 0.2-0.3. This 
is evident from the results of solution of the model problem shown in Fig. 2, where the 
initial data ("experimental" AT) was the results of solution of the direct problem of the 
heating of a plate 5 mm thick with ~ = 40 W/(m.K), a = 0.04 m2/h. 

NOTATION 

T, time; r, coordinate; T, temperature; q, heat flux; %, thermal conductivity; c, volu- 
metric specific heat; a, diffusivity. 

LITERATURE CITED 

i. V.I. Zhuk and A. S. Golosov, "Engineering methods of determining thermal boundary 
conditions from temperature measurements," Inzh.-Fiz. Zh., 29, No. i, 45-50 (1975). 

2. A.V. Lykov, Theory of Heat Conduction [in Russian], Vysshaya Shkola, Moscow (1967). 
3. O.M. Alifanov, Identification of Heat-Exchange Processes in Aircraft [in Russian], 

Mashinostroenie, Moscow (1979). 

1297 


